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SUMNMIARY

During the DARPA ANNT Program countracr, new neural network architectares wern
developed to carryv out autonomous real-thime preprocessing, segmentation, ccoanition, @i
ing. and control of both spatial and temporal inpurs. This brief summary is foilowed b o
more extensive ope. which cites articles from the list of publications (pp. 1 61

(1) Preprocessing of visual form and motion signals: Parallel cortical svstens fir
the processing of static visual forms and moving visual forms are derived from a principle
called FM Symmetry. A solution of the global motion segmentation problem for computer
vision is also outlined. as well as an analvsis of 3-D vision and figure-ground pop-our 1 FA-
CADE theorvi. A fecdforward What-and-Where filter models paml]ol xunai SVSTenis to
generate an input representation (What it 1s) that is invariant to position. size. and orienta-
tion without discarding this information (Where it is). Synchronized oscillations in a model
of visual cortex are capable of rapidly binding \pdﬂr{“\ distributed feature detectars into a
globally coherent segmentation. Another system separates scenic figures from each other i
a clutrered background. The vision models have been applied to the analvsis of brightiess
perception. illusory contours. feature binding. and reset. The models have also been applied
to the processing of synthetic aperture radar (SAR) images.

(2} Preprocessing of acoustic signals: A\ neural network model {or preprocessing an
Acoustic source generates a representation of pitch as a spatial pattern that emerges {rom
a tvpe of neural harmonic sieve. Neural networks are also used 1o evaluate 160 speaker
nurmalvdtmn methods for vowel recognition.

(3) Adaptive pattern recognition and categorization: Unsupervised learning:
Analgorithmic fearning system. called ART2- AL achieves a 2-3 order of magnitude speed-up
over the ART 2 recognition systern. Another new analog adaptive resonance model fazzv
ART) incorporates computations from fuzzy set theory into the hinary ART | model. Whey
nsed as part of a larger architecture for supervised learning, fuzzy ART enables the qwr 1o
imterpret vectors of learned adaptive weights as if-then rules, thus defining a self-oraanizing
expert system. ART systems are also central to a neural theory of visual search and atrention
to segmentations: and to an analysis of normal and amnesic learning.

(4) Adaptive pattern recognition and prediction: Supervised learning: 1he
ARTMAP an rl fuzzy ARTMAP architectures carry out incremental supervised lrarmmr of
recognition categories and multidimensional maps in response to arbitrary sequences of ana-
log or binary vectors. A Minimax Learning Rule conjointly minimizes predictive error and
taxitnizes code compression, thereby <)mmmH\ shaping recognition categories to the ~tatis-
ries of the inpiut environment. Benchmark studies affirm ARTMADPS power conpared 1o
alternative models from machine learning, senetic aleorithms. and nenral n(*rwm'ks. inchyd-
ing application domains such as large database analysis. medical prediction, rule extraction,
and probability estimation. Fusion ARTMAP is a mdti-chanpel ARTMAD nerwork for
rlti-sensor data fusion. Another system (NENST) naes VLS switehing theory to desioy




neural networks with a wininoro smmber of iCchien oiles for bluary supervised Jearni
problems.

(5) Temporal patterns, working memory. and 3-D object recognition: Workive
memory neural networks. called Sustained Temporad Order REcurrent {STORE models. e
code the invariant temporal order of sequential events, with repeated or non-repeated itens,
in a manner that is stable under incremental learning conditions. Aunther svstem. ART-
EMAP. uses spatial and temporal evidence accumulation to improve ARTMAP perfonmance
in noisy input environments. Both STORE and ART-EMAP systems are being applic {1
3-D object recognition problems.

(6) Adaptive timing: A neural network circuit models adaptive timing of recognition
and reinforcement learning. The model is closely linked to circuits in the hippocampus.

(7) Adaptive control: An unsupervised error-based learning system called & Vector
Associative Map (VAM) learns 3-D spatial representations and self-calibrating rrajectory
controllers in robotics applications. A model of sensory-motor control shows how outfow
eve movement commands can be transformed by two stages of opponent processing into i
head-centered spatial representation of 3-D target position. Opponent proce-sing iy again
a key element in an analysis of arm movement data.  Analysis of sensory-miotor conrrol
systems frames a model of cerebellar learning. A model of motor oscillations simulates
bimanual coordination and human and quadruped gait transitions. Another svstem muodels
handwriting production. including cursive script. Related model properties are nsed in an
application to optimal control of machine set-up scheduling.

These and related projects, including model development. analysis. simulation. and com-
parisons with behavioral and neural data. are described below.

The contract has provided partial summer salary for the two Principal Investigators and
suppor for four Research Assistants. all of whom are PhD students in the Boston University
Department of Cognitive and Neural Systems.




1. PREPROCESSING OF VISUAL FORM AND MOTION SIGNALS

(1A) Why do parallel cortical systems exist for the perception of static form and
moving form?

This project analyses computational properties that clanify why the parallel cortical <vs
tems V01— 120 V1 — W7 and VI — V2 — MT exist for the pereeprual ;m,uw- o i
static visual forms and moving visual forms. A svinmetry principles called FN Svanenres s
predicted to govern the development of these parallel cortical systems by computing ali s
sible wavs of symmetrically gating sustained cells with transient cells and oreanizing these
sustained-transient cells into opponent pairs of on-cells and off-cells whose ourpur sapais
are insensitive to direction-of-contrast. This symmetric organization explins how the ~td'}<
form svstem (Static BCS) generates emergent boundary segmentations whose outpnrs g
insensitive to direction-of-contrast and insensitive to direction-of-motion. whereas the mo
tion form syvstem (Motion BCS) generates emergent boundary segmentations whose outputs
are insensitive to direction-of-contrast but sensitive to direction-of-motion. F -
trv clarifies why the geometries of static and wotion form perception ditffer: for exanple,
why the opposite orientation of vertical is horizontal {90°), but the opposite direction of
up is down (130°). Opposite orientations and hre(tmn\ are embedded in gated dipole op-
ponent processes that are capable of antagonistic rebound. Negative afterimages. such a-
the MacKay and waterfall illusions, are hereby explained. as are aftereffects of lone-ranee
apparent motion. These antagonistic rebounds help to control a dynamic balance betwees
complementary perceptual states of resonance and reset. Resonance cooperativelv links f(*a‘
tures into emergent boundary segmentations via positive feedback in a ('C [()()p and reset
terminates a resonance when the image changes, thereby preventing massive smearing of
percepts. These complementary preattentive States of resonance and reset are related to
analogous states that govern attentive feature integration. learnmg, and memory search in
Adaptive Resonance Theorv The mechanism used in the VI — MT system to generate a
wave of apparent motion between discrete flashes may also be used in other (omual svstens
to generate spatial shil.s of attention. The theory suggests how the VI — V72 — WU T cortical
stream helps to compute moving-form-in-depth “and how long-range apparent motion of il-
lusory contours occurs. These results (olle(tneh argue against vision theories that espouse
independent processing modules. Instead. specialized subsvstems interact to overcome con-
puiational uncertainties and complementary deficiencies. to cooperatively bind features int
context-sensitive resonances. and to realize symmetry nrinciples that are predicted to covern
the development of visual cortex. [56-39. 61]

(1B) Cortical dynamics of visual motion perception: Short-range and long-range
apparent motion

The theory of biological motion perception is also nsed to explain classical and recent
data dbout short-range “and long-range apparent motion percepts that have not ver been
explained by alternative models. These data include heta motion: split motion: ganmima
motion and reverse-contrast gamma motion: delta motion: visval inertia: the transition
trom group motion to element motion in response to a Ternus display as the interstimuine
interval (ISI) decreases: group motion in response to a reverse-contrast. Ternmis display even
at short 1Sls: speed-up of motion velocity as interflash distance increases or flash duration
decreases: (lf;)(smlonu* of the transition from element motion to group motion nn stitudus
duration and size; various classical dependencies between flash duration. spatial separation.
ISI. and motion threshold known as }\'ortr*'s Laws: dependence of motion strength on stimulos
orientation and spatial frequency: short-range and long-range form-color interactions: anid
hinoeular interactions of fashes to different eves. [63 69]




(1C) Neural dynamics of global motion segmentation: Detection fields. aper-
tures, and resonant grouping

This project has developed a neural network model of elobal totion seomentation by
visual cortex. Called the Motion Boundary Contour Svstem ( BOS) the mode] clarifes bos
ambignous local movements on a complex moving shape are actively reorganized into 4 co
herent global motion signal. Unlike tany previous researchers, we analvse how a cobieyen
motion signal is imparted to all regions of a moving figure, not only to n»gium at which un-
ami)iguous motion signals exist. The niodel hereby suggests a solution to the global aperore
problem. The Motion BCS describes how § )repro((’\\mo of motion signals by a Motion Ort-
ented Contrast Filter (MOC Filter) is joined to long-range cooperative erouping mechanisms
in a Motion Cooperative-Competitive Loop (MOCC Loop) to control phenomena such as
motion capture and induced motion. The Motion BCS is computed in parallel with the Static
BCS of Grossberg and Mingolla (1933a. 1933h. 1937}, Homologous properties of the Morion
BC'S and the Static g('S. specialized to process movement directions and static orientarions
respectively. support a unified explanation of many data about static form perception and
motion form perception that have heretofore been unexplained or treated separately. Predic.
tions about Illl(‘r()\(()})l( computational differences of the parallel cortical streams V1 — M7
and V'l — V2 are made. The Motion BCS can compute motion directions it iy be
synthesized from multiple orientations with opposite directions-of-contrast. Interactions of
model simple cells. complex cells. h\per(omple\ cells. and bipole cells are described. with
special emphaals given to new functional roles (direction disambiguation. induced motion:
for end stopping at multiple processing stages and to the dmdrm( interplay of spatially
short-range and long-range interactions. [65- 66]

(1D) Brightness perception, illusory contours, and corticogeniculate feedback

A neural network model of early visual processing offers an explanation of \mhmtm
effects often associated with illusory contours. Top-down feedback from the model's analoe
of visual cortical complex cells to model lateral geniculate nucleus (LGN cells are ased 1o
enhance contrast at line ends and other areas of boundary discontinuity. The result 15 an
increase in perceived brightness outside a dark line end. akin to what Kennedyv (1979) termed

“brightness buttons™ in “his analysis of visual illusions. When several lines form a snitable
configuration. as in an Ehrenstein pattern. the perceptual effect of enhanced brightness can
be quite strong. Model simulations show the generation of brightness buttons. Wirh the
LGN model cricuitry embedded in a larger model of preattentive vision. simulations nsine
complex inputs show the interaction of the brightness buttons with real and illusory conrours,
O

(1E) A what-and-where neural network for invariant image preprocessing

The What-and-Where filter is a feedforward neural network for invariant image prepro-
cessing that represents the position. orientation. and size of an image figure (where it is
in a multiplexed spatial map. This wap is used to generate an invariant representation of
the figure that is insensitive to position, orientation. and size for purposes of pattern recou-
nition (what it is). A multiscale array of oriented filters, followed by competition hetween
orientations and scales is used to define the Where hlter. [23]

(1F) Figure-ground separation of connected scenic figures: Boundaries, filling-in,
and opponent processing

A neural network model performs antomatic parallel separation of connected scenie fig:
ures from one another and from their backerounds. The model is part of a self-oreanizing
architecture for invariant pattern recognition in a cluttered environment. The figiure-eronnd
separation process iterates operations from a Feature Contour Svstem (FCS) and a Bound.
ary Contour Systemn (BCS). The FOS discounts the illiminant and Glls-in surface properties
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such as brightness and color, using the disconnted sienals, A Reyv iidea of the FRE 2o
is to use filling-in for figure-gronnd separation. The BUS venerates honndary sevnientaion-
that define the regions in which fillingin occurs. The BOS i wmodeted by a !‘«ui"w\.,r';

network. called the CORT-X 2 filter. that cobines oriented rece prive fields mz brectifyin

competitive. and cooperative interactions to detect. reqularize. and complete boumdarios is'z
up to 30% analog noise. This filter cotbines complementary properties of laree receptive
fields and small receptne fields. and of on-cells and vif-cells. 10 wenerate positionally ot
accurate and less noisy houndaries. Double uppomm imteractions of un-cells mn-i «».f cells
facilitate separation of figures with incomplete CORT-X boundaries. The resuits clarify winy
an FBF net\u)rl\ can rapidly separate hvurm that humans cannot separate im‘im: \'i,wmf

search tasks. [T4-77]

(1G) Cortical dynamics of 3-D vision and figure-ground pop-out

A neural model. called FACADE Theory (Form-And-Color-And-DEpth). shows how the
parvocellular processing streams from LGN to V4 can give rise to 3-D visual pereepts in
which figures pop-out from their backgrounds. The model suggests how cortical mechas
nisms such as boundary completion, texture segregation, and surface hlling-in are used for
this purpose. It clarifies how monocularly viewed parts of an itnage may hll-in the appro-
priate surface depth from countiguous binocularly viewed parts (lurmq DaVinci stereopsis,
Other explanations include how a 2-D image may generate a 3-D percept. how spatially
sparse disparity cues can generate continuous surface representations at different perceived
depths. and how representatlons of occluded regions can be completed and recognized with-
out usually being seen. The model has also been used to andlwe data about such varied
phenomena as illusory contours. shape from-texture, visual persistence, and svnchronous
cortical oscillations. It suggests how the brain uses computationally complementary bloh
and interblob processing streams wherein a hierarchical resolution of uncertainty generates
context-sensitive visual representations that overcome several different sources of local anmibi-
guity in visual data. Cortical circuits of simple. complex. hypercomplex. and bipole cells are
simulated. Recent psychophysical and neurobiological data relevant to model explanations
and predictions are summarized. {60. 62

(1H) Synchronized oscillations for binding spatially distributed feature codes
into coherent spatial patterns

Neural network models are described for binding out-of-phase activations of spatially

distributed cells into synchronized oscillations within a single processing cycle. These results
suggest how the brain may overcome the temporal “jitter” “inherent in multi-level processing
of spatlall» distributed data. Coherent syn(hmnous patterns of spatially distributed fea-
tures are formed to represent and learn about external objects and events. Temporal jitter
thus does not typl(ally cause scenic parts to be combined into the wrong visual «)b]((t\
During preattentive vision, such patterns may represent emergent boundary segmentations.
mdudmc illusory contours. During attentive visual object recognition. such patterns mav
nccur durmc an attentive resonant state that triggers new learnmg‘ Different properties of
preattentive Cand attentive oscillations are predicted, and compared with neurophysiological
data concerring rapid synchronization of cell activations in visual cortex. [70-73]

(1I) Cortical dynamics of feature binding and reset

Many properties of visual persistence are hypothesized to be caused by positive feedback
in the visual cortical circuits that are responsible for the hinding or segmentation of visual
features into coherent visual forms, with the degree of pemston(o limited by circuits that
reset these segmentations at stimulus offset. A model of the cortical local circuitry responsi-
ble for such fed.turo hinding and reset quantitatively simulates psychophysical data showing

1




increase of persistence with spatial separation of & masKine svinidns: inverse relation of jas
sistence to fash luminance and duration: erearer persistence of Husory contonrs R
contours, with maximal persistence at an intermediate stimulus duration: and dependence
of persistence on pre-adapted stimulus orientation. Data concerning cortical cell responses
to ilusory and real (ontours are also analysed. as are alternative models of feature binding
and persistence properties. [47-43]

(1J) Processing of synthetic aperture radar (SAR) images by the BCS/FCS
system

An improved Boundary Contour System (BCS) and Feature Contour System (F(S)
neural network model of preattentive vision has been applied to two large images containing
range data gathered by a synthetic aperture radar (SAR) sensor. The goal of pm( essing
is to make structures such as motor vehicles, road. or buildings more salient and more in-
terpretable to human observers than they are in the original imagery. Early processing by
shunting center-surround networks compresses signal dynamic range and performs local con-
trast enhancement. Susequent processing by filters sensitive to oriented contrast. including
short-range competition and long-range cooperation, segments the image into regions. Fi-
nally, a diffusive filling-in operatxon within the aecrmented regions produces coherent visible
structures. The combination of BCS and FCS helps to locate and enhance structure over
regions of many pixels, without the resulting blur characteristic of approaches based on low
spatial frequency filtering alone. [46]




2, PREPROCESSING OF ACOUSTIC SIGNALS

(2A) A neural network model of pitch detection and representation

A neural network model capable of generating a spatial representation for the piveh of
an acoustic source has been developed. The model. called the Spatial Pitch .\'fﬁr“.'ur%{. FINEN
a “harmonic sieve” mechanism whereby the strength of activation of 4 ¢iven ka'n bodepends
upon a weighted sum of narrow regions around the harmonics of the nowinal piteh valie
A key feature of the model is that higher harmonics contribute less to a pitel than Jower
ones. Suitably chosen harmonic weighting functions enable computer simulations of pitch
perception data involving mistuned components, shifted harmonics. and various types of
continuous spectra including rippled noize. It is shown how the weighting functions produce
the dominance region and how they lead to octave shifts of pitch in response to ambien
ous stimuli. No explicit attentional window is needed to hrmt pitch choices by the IH(}mi
A method is described for relating the deterministic strength-of-activation pitch Jaietion
to statistical human performance and for comparing the network model with (;«m\\usmi\
statistical Optimum Processor Theory. [14-15]

(2B) Evaluation of speaker normalization methods for vowel recognition using

fuzzy ARTMAP and K-NN

Fuzzy ARTMAP and K-Nearest Neighbor (K-NN) categorizers are used to evaluate in-
trinsic and extrinsic speaker normalization methods. Each classifier is trained on prepro-
cessed. or normalized, vowel tokens from about 30% of the speakers of the Peterson-Barney
database. then tested on data from the remaining speakers. Intrinsic normalization meth-
ods include one nonscaled, four psychophysical scales (bark. bark with end-correction. mel.
ERB), and three log scales, each tested on four different combinations of the fundamental
{Fy) and the formants (Fy, F. F3). For each scale and {requency combination. four extrinsic
speaker adaptation schemes are tested: centroid subtraction across all frequencies ('S}, cen-
troid subtraction for each frequency (CSi). linear scale (LS), and linear transformation (LT
A total of 32 intrinsic and 123 extrinsic methods are thus compared. Fuzzy ARTMAP and
K-NN show similar trends. with K-NN performing somewhat better and fuzzy ARTMAD
requiring about 1/10 as much memory. The optimal intrinsic normalization method is bark
scale, or bark with end-correction, using the differences between all frequencies (Diff Allh.
The order of performance for the extrinsic methods is LT, CSi. LS. and €S, with fuzzy
ARTMAP performing best using bark scale with Diff All. and K-NXN choosing psychophysi-
cal measures for all except, CSi. [ 2]




3. ADAPTIVE PATTERN RECOGNITION AND CATEGORIZATION: UN-
SUPERVISED LEARNING

(3A) Fuzzy ART: Fast stable learning and categorization of analog patterns by
an adaptive resonance system

A fuzzy Adaptive Resonance Theory (ART) wodel capable of rapid stable learning of
recognition categories in response to arbitrary sequences of analog or hinary input patterns
has been developed. Fuzzy ART incorporates computations from fuzzy set theory into the
ART | neural network, which learns to categorize only binary input patterns. The generaliza-
tion to learning both analog and binary input patterns is achieved by replacing appearances
of the intersection operator (n) in ART 1 by the MIN operator (A} of fuzzy set theory. The
MIN operator reduces to the intersection operator in the binary case. Category proliferation
is prevented by normalizing input vectors at a preprocessing stage. A normalization proce-
dure called complement coding leads to a symmetric theory in which the MIN operator (A
and the MAX operator (v) of fuzzy set theory play complementary roles. Complement cod-
ing uses on-cells and off-cells to represent the input pattern, and preserves individual feature
amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all
adaptive weights can only decrease in time. Decreasing weights correspond to increasing
sizes of category “boxes”. Smaller vigilance values lead to larger category boxes. Learning
stops when the input space is covered by boxes. With fast learning and a finite input set of
arbitrary size and composition, learning stabilizes after just one presentation of each input
pattern. A fast-commit slow-recode option combines fast learning with a foreetting rule that
buffers system memory against noise. Using this option, rare events can be rapidly learned.
vet previously learned memories are not rapidly erased in response to statistically unreliable
input fluctuations. {36-37)

(3B) ART 2-A: An adaptive resonance algorithm for rapid category learning and
recognition

ART 2-A is an efficient algorithm that emulates the self-organizing pattern recognition
and hypothesis testing properties of the ART 2 neural network architecture. but at a speed
two to three orders of magnitude faster. Analysis and simulations show how the ART 2-A
syvstems correspond to ART 2 dynamics at both the fast-learn limit and at intermediate
learning rates. Intermediate learning rates permit fast commitment of category nodes but
slow recoding, analogous to properties of word frequency effects, encoding specificity effects,
and episodic memory. Better noise tolerance is hereby achieved without a loss of learning
stability. The ART 2 and ART 2-A systems are contrasted with the leader algorithm.
The speed of ART 2-A makes practical the use of ART 2 modules in large-scale neural
computation. In particular, researchers using ART 2 for applications in the DARPA ANNT
Program have used ART 2-A for their projects. [34-35]

(3C) A neural theory of visual search

A neural theory is proposed in which visual search is accomplished by perceptual group-
ing and segregation, which occurs simultaneously across the visual field. and object recogni-
tion, which is restricted to a selected region of the field. The theory offers an alternative hv-
pothesis to recently developed variations on Feature Integration Theory (Treisman and Sato.
1991) and the Guided Search Model (Wolfe, C'ave, and Franzel, 1939). A neural architecture
and search algorithm is specified that quantitatively explains a wide range of psvchophysical
search data (Cohen and Ivry, 1991; Mordkoff. Yantis. and Egeth, 1990: Treisman and Sato.
1991; Wolfe, Cave, and Franzel, 1989). [67]




(3D) Normal and amnesic learning, recognition, and memory by a neural model
of cortico-hippocampal interactions

The processes by which humans and other primates learn to recognize objects have
been the subject of many models. Processes such as learning, categorization. attention.
memory search, expectation, and noveity detection work together at different stages to realize
object recognition. The structure and function of one such model class (Adaptive Resonance
Theory, ART) are related to known neurological learning and memory processes. such as
how inferotemporal cortex can recognize both specialized and abstract information. and how
medial temporal amnesia may be caused by lesions in the hippocampal formation. The
model also suggests how hippocampal and inferotemporal processing may be linked during
recognition learning. [20]




4. ADAPTIVE PATTERN RECOGNITION AND PREDICTION: SUPER-
VISED LEARNING

(4A) ARTMAP: Supervised real-time learning and classification of nonstationary
data by a self-organizing neural network

A neural network architecture, called ARTMAP. autonomously learns to classify arbitrar-
ily many. arbitrarily ordered vectors into recognition categories based on predictive success.
This supervised learning system is built up from a pair of Adaptive Resonance T heory mod-
ules (ART, and ART}) that are capab e of self-organizing stable recognition categories in
response to arbitrary senluences of input patterns. During training irials, the ART, mod-
ule receives a stream {alP)} of input patterns, and ART, receives a stream {b{P/} of input

patterns, where b(P) is the correct prediction given a'®. These ART modules are linked by
an associative learning network and an internal controller that ensures autonomous svstem
operation in real time. During test trials, the remaining patterns al?) are presented without
b(P), and their predictions at ART, are compared with b(?). Tested on a benchmark machine
learning database in both on-line and off-line simulations, the ARTMAP system learns or-
ders of magnitude more quickly, efficiently, and accurately than alternative algorithms. and
achieves 100% accuracy after training on less than half the input patterns in the database. It
achieves these properties by using an internal controller that conjointly maximizes predictive
generalization and minimizes predictive error by linking predictive success to category size on
a trial-by-trial basis, using only local operations. This computation increases the um]ance
parameter pq of ART, by the minimal amount needed to correct a prediciive error at ART,.
ARTMAP is hereby a type of self-organizing expert system that calibrates the selectivity of
its hypotheses based upon predictive success. As a result, rare but important events can be
quickly and sharply distinguished even if they are similar to frequent events with different
consequences. Because ARTMAP learning is self-stabilizing, it can continue learning one or
more databases, without degrading its corpus of memories. until its full memory capacity is
utilized. [28-32]

(4B) Fuzzy ARTMAP: A neural network architecture for incremental supervised
learning of analog multidimensional maps

Fuzzy ARTMAP extends the capabilities of ARTMAP to carry out incremental super-
vised learning of recognition categories and multidimensional maps in response to arbitrary
sequences of analog or binary input vectors. A normalization procedure called complement
coding leads to a symmetric theory in which the AND operator (A) and the OR operator
(V) of fuzzy logic play complementary roles. Improved prediction is achieved by training
the system several times using different orderings of the input set. This voting strategy can

also be used to assign confidence estimates to competing predictions given small. noisy. or
incomplete training sets. Four classes of simulations illustrate fuzzy ARTMAP performam e
as compared to benchmark back propagation and genetic algorithm systems. These simu-
lations include (i) finding points inside vs. outside a circle; (ii) learning to tell two spirals
apart; (iii) incremental approximation of a piecewise continuous functlon and (iv) a letter
recognition database. [19, 21, 24-27)




(4C) Fusion ARTMAP: A neural network architecture for multi-channel data
fusion and classification

Fusion ARTMAP is a self-organizing neural network architecture for mmnlti-channei. or
multi-sensor, data fusion. Single-channel tuwon ARTMAP is functionally equivalent to fuzas
ART during unsupervised 1edrmno and to fuzzy ARTMAP during supervised learnine. [l
network has a symmetric organization such that each channel can be dynamically confizured
to serve either as a data input or a teaching input to the system. An ART module forms a
compressed recognition code within each channel. These codes. in turn. become inputs to
a single ART system that organizes the global recognition code. When a predicrive ¢ rror
occurs. a process called parallel match tracking simultaneously raises vigilances in mnitipl
ART wmodules until reset is triggered in one of them. Parallel match trac king hereby rescts
only that portion of the recognition code with the poorest match. or minimum prml'r'tw
confidence. This internally controlled selective reset process is a type of credit assignment
that creates a parslmomousl\ connected learned network. Fusion ARTMAP’s multi-channel
coding is illustrated by simulations of the Quadruped Mammal database. {1]

L

(4D) Comparative performance measures of fuzzy ARTMAP, learned vector
quantization, and back propagation for handwritten character recognition

A simulation study compares the performance of fuzzy ARTMAP with that of learned
vector quantization and back propagation on a handwritten character recognition task.
Training with fuzzy ARTMAP to a fixed criterion uses many fewer epochs. Voting with
fuzzv ARTMAP vields the highest recognition rates. [22

(4E) Rule extraction by fuzzy ARTMAP

Knowledge, in the form of fuzzy rules, can be derived from a self-organizing supervised
learning neural network called fuzzy ARTMAP. Ftle extraction proceeds in two stages: prin-
ing removes those recognition nodes whose confi - nce index falls below a selected threshold.
and a quantization of continuous learned weights allows the final system state to be trans-
lated into a usable set of rules. Simulations on a medical prediction problem. the Pima
[ndian Diabetes (PID) database, illustrate the method. In the simulations, pruned networks
about one-third the size of the original actually show improved performance. Quantization
T\1elds comprehensible rules with on]y slight degradation in test set prediction performance.

139]

(4F) Medical database analysis and survival prediction by neural networks

Fuzzy ARTMAP has been used for analysis of medical databases, with comparative \z 1d-
ies of other neural networks and statistical methods. Survival prediction networks have heen
derived from large data sets for breast cancer. cardiac bypass surgery (CABG). and pneu-
moma}pdtlents Ongoing studies focus on problems of missing data and rule \dormﬁmmm

1. 33

(4G) Fuzzy ARTMAP, slow learning, and probability estimation

A nonparametric probability estimation procedure uses the fuzzy ARTMAP neural net-
work. Because the procedure does not make a priori assumptions about underlying proba-
bility distributions, it yields accurate estimates on a wide variety of prediction tasks. Fuzzv
ARTMAP is used to perform probability estimation in two dlﬂ"erent modes. In a 's}m-
learning” mode, input-output associations change slowlv, with the strength of each associa-
tion computing a conditional probability estimate. In “max-nodes” mode. a fixed number of
categories are coded during an initial fast learning interval, and weights are then tuned by
slow learning. Simulations llluatmt@ system performance on tasks in which various numbers
of clusters in the set of input vectors mdpped to a given class. [33]
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(4H) Probabilistic neural networks and calibration of supervised learning sys-
tems

Probabilistic, or general regression, neural networks have been developed for the cal-
ibration of supervised learning systems. A training process learns receptive field width
parameters and calibrates predictions to reflect binary outcome probabilities. [79]

(4I) Construction of neural network expert systems using switching theory

This project introduces a new family of neural network architectures (NEXsT) that use
switching theory to construct and train minimal neural network classification expert sys-
tems. The primary insight that leads to the use of switching theory is that the problem of
minimizing the number of rules and the number of IF statements (antecedents) per rule in
a neural network expert system can be recast into the problem of minimizing the number
of digital gates and the number of connections between digital gates in a Very Large Scale
Integrated (VLSI) circuit. Algorithms for minimizing the number of gates and the number
of connections between gates in VLSI circuits are used, with some modification. to gener-
ate minimal neural network classification expert systems. The minimal set of rules that
the neural network generates to perform a task are readily extractable from the network’s
weights and topology. Analysis and simulations on several databases illustrate the system’s
performance. [78]




5. TEMPORAL PATTERNS, WORKING MEMORY, AND 3-D OBJECT
RECOGNITION

(5A) Working memory networks for learning temporal order with application to
3-D visual object recognition

Working memory neural networks, called Sustained Temporal Order REcurrent
{STORE) models. encode the invariant temporal order of sequential events in short-term
memory {STM). Inputs to the networks may be presented with widely differing growth
rates, amplitudes, durations. and interstimulus intervals without altering the stored STM
representation. The STORE temporal order code is designed to enable groupings of the
stored events to be stably learned and remembered in real time. even as new events perturh
the system. Such invariance and st=ability properties are needed in neural architectures which
self-organize learned codes for var .ble-rate speech perception. sensory-motor planning. or
3-D visual object recogmtlon Using such a working memory, a self-organizing architecture
for invariant 3-D visual object re(ognmon is described. The new model is based on a morel
of Seibert and Waxman, which builds a 3-D representation of dn object from a temporally
ordered sequence of its 2-D aspect graphs. The new model, called an ARTSTORE model.
consists of the following cascade of processing modules: Invariant Preprocessor — ART 2 —
STORE Model — ART 2 — Outstar Network. [3-4]

(5B) Working memories for storage and recall of arbitrary temporal sequences

An extension of the STORE model encodes a working memory capable of storing and
recalling arbitrary temporal sequences of events, including repeated items. The memory
encodes the invariant temporal order of sequential events that may be presented at widely
differing speeds, durations, and interstimulus intervals. This temporal order code is designed
to enable all possible groupings of sequential events to be stably learned and remembered in
real time, even as new events perturb the system. [5-6]

(5C) ART-EMAP: Learning and prediction with spatial and temporal evidence
accumulation

ART-EMAP is a neural architecture that uses spatial and temporal evidence accumu-
lation to extend the capabilities of fuzzy ARTMAP. ART-EMAP combines supervised and
unsupervised learning and a medium-term memory process to accomplish stable pattern
category recognition in a noisy input environment. The ART-EMAP system features (1)
distributed pattern registration at a view category field; (ii) a decision criterion for mapping
hetween view and object categories which can delay categorization of ambiguous objects
and trigger an evidence accumulation process when faced with a low confidence prediction:
(iiij a process that accumulates evidence at a medium-term memory (MTM) field: and (iv)
an unsupervised learning algorithm to fine-tune performance after a limited initial period
of supervised network training. ART-EMAP dynamics are illustrated with a benchmark
\1mulat10n example. Applications include 3-D object recognition from a series of ambiguous

2-D views. [38]
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6. ADAPTIVE TIMING

(6A) A neural network model of adaptively timed reinforcement learning and
hiprocampal dynamics

A new neural network models adaptively timed reinforcement learning. The adaptive
timing circuit i suggested to exist in the hippocampus. and to involve convergence of den-
tate granule cells on CA3 pyramidal cells. and NMDA receptors. This circuit forms part
of a model neural system for the coordinated control of recognition learning, reinforcement
learning, and motor learning, whose properties clarify how an animal can learn to acquire a
delayed reward. Behavioral and neural data are summarized in support of each processing
stage of the system. The relevant anatomical sites are in thalamus. neocortex hippumm;m\‘
hy pothalamus amygdala, and cerebellum. Cerebellar influences on motor learmna are dis-
tinguished from hippocampal influences on adaptive timing of reinforcement Iedrmng. The
model simulates how damage to the hippocampal formation disrupts adaptive tiniing. elimi-
nates attentional blocking, and causes symptoms of medial temporal amnesia. Properties of
learned expectations, attentional focussing, memory search. and orienting reactions 10 novel
events are used to analyse the blocking and amnesia data. The model also suggests how
normal acquisition of subcortical emotional conditioning can occur after cortical ablation.
even though extinction of emotional conditioning is retarded by cortical ablation. The model
simulates how increasing the duration of an unconditioned stimulus increases the amplitude
of emotional conditioning, but does not change adaptive timing; and how an increase in the
intensity of a conditioned stimulus “speeds up the clock,” but an increase in the intensity
of an unconditioned stimulus does not. Computer simulations of the model fit parametric
conditioning data. including a Weber law property and an inverted U property. Both pri-
mary and secondary adaptively timed conditioning are simulated. as are data concerning
conditioning using mult:ple interstimulus intervals (ISIs), gradually or abruptly changing
ISIs, partlal remforcement and multiple stimuli that lead to time-averaging of resp(m\(\
\euroblolovwally testable predlctions are made to facilitate further tests of the mocel. 64
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ADAPTIVE CONTROL

(TA) Neural representations for sensory-motor control: Head-centered 3-D tar-
get positions from opponent eye commands

This project describes how corollary discharees from ontflow eve moverent conmands
can be transformed by two stages of opponent neural processing into a head-centered repre.
sentation of 3-D target position. This representation implicitly defines a evelopean coordinag e
system whose variables approximate the binocular vergence and spherical. horizontal, and
vertical angles with respect to the observer’s head. Various psychophyvsical data concerning
binocular distance perception and reaching behavior are clarified by this representation. The
representation provides a foundation for learning head-centered and body-centered invarian
representdtums of both foveated and non-foveated 3-D tar get positions. It also enables a
solution to be developed of the classiral motor equivalence pmbl(’m whereby many differens
joint configurations of a redundant manipulator can all be used to realize a desired trajectory
in 3-D space. [35]

{(7B) Emergence of tri-phasic muscle activation from the nonlinear interactions
of central and spinal neural network circuits

The origin of the tri-phasic burst pattern. observed in the EMGs of opponent mins-
cles during rapid self-terminated movements. has been controversial. Computer simulations
show that the pattern emerges from interactions between a central neural trajectory con-
troller VITE circuit) and a peripheral nemonms(ular force controller (FLETE circuit}. Both
neural model.s have been derived from simple functional constraints that have led to prin-
cipled explanations of a wide variety of behavioral and neurobiological data. including the

generation of tri-phasic bursts. [¥]

(7C) Cerebellar learning in an opponent motor controller for adaptive load com-
pensation and synergy formation

A minimal neural network model of the cerebellum is embedded within a sensorv-neurs-
muscular control svstem that mimics known anatomy and physiology. With this embedding.
cerebellar learning promotes load compensation while aiso allowing both coactivation .'mti
reciprocal inhibition of sets of antagonistic muscles. In particular. we show how syvnaptic
long term depression guided by feedback from muscle atret(h receptors can lead to trans-
cerebellar zain (hdnop& that are load- compensating. [t is argued that the same processes
help to adaptively discover multi- -joint synergies. Simulations of rapid single joint rotarions
under load iHlustrates design feasibility and stability. [7]

(7D) O»ntimal control of machine set-up scheduling

An optimal control solution to change of machine set-up scheduling s demonstrated.
The model is based on dynamic programming average cost per stage value iteration as ~et
forth by Caramanis ¢t al. for the 2-D case. The ditheulty with the optimal approach lies
in the explosive computational growth of the resulting solution. A method of redncing the
computational complexity is developed using ideas from biology and neural networks. A
real-time controller is described that uses a linear-log representation of state space. with
neural networks employed to fit cost surfaces. [2]

(TE) Vector associative maps: Unsupervised real-time error-baced learning and
control of movement trajectories

This project has led to the development of neural network models for adaptive control of
arm movement trajectories during visually guided reaching and. more generally, a framework
for unsupervised real-time error-based learning, The models clarify how a cildor nutrained
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robot, can learn to reach for objects that iosees. [ shiown how endogenonfe wonone
arm movements lead to adaptive tuning of artn control parameters. These moveents ol
activate the target position representations that are used to learn the visnornotor fras
formation that controls visually guided reaching. The AVITE model is an adaptive nearal
circuit based on the Vector Integration to Endpoint {(VITE ) model for arm and speech trijec.
tory generation of Bullock and Grossberg. In the VITE model. a Target Position Conrnarnd
{ TPC) represents the location of the desired tareget. The Present Position Command iPPC
encodes the present hand-arm configuration. The AVITE model explains how self-consisten
TPC and PPC coordinates are autonomously generated and learned. Learning of AVITE
parameters is reculated by activation of a self-requlating Endogenous Random Generator
(ERG) of training vectors. Each \e(tor is integrated at the PPC. giving rise 1o A THOveTen
(ommaud The generation of each vector induces a (nmpiememdr» })()\Tumi phase during
which ERG output stops and learning occurs. ERG output autonomously stops in such .
way that. across trials, a broad sample of workspace target positions is generated. Learuin:
of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroe «i
due to learning. This learning scheme is called a Vector Associative Map, or VAM. Th
VAM model is a general-purpose device for autonomous real-time error-based learning (u,(l
performance of associative maps. VAMs thus provide an on-line unsupervised alternative
to the off-line properties of supervised error-correction learning algorithms. VAM mmif‘l\‘
and Adaptive Resonance Theory (ART) models exhibit complementary matching, learn-
ing. and performance properties that together provide a foundation for designing 4 toral
sensory-cognitive and cognitive-motor autonomous system. [$9-32]

i

(TF) A neural pattern generator that exhibits bimanual coordination and human
and quadruped gait transitions

A neural pattern generator is based upon a nonlinear cooperative-comperitive feedback
neural network. The syvstem can generate two standard human gaits: the walk and the rin
A scalar arousal or GO signal causes a bifurcation from one gait to the next. Althoueh
these two gaits are qualitatively different. they both have the same limb order and mav
exhibit oscillation frequencies that overlap. The model simulates the walk and the run via
qualitatively different waveform shapes. The fraction of cvcle that activity is above threshoid
distinguishes the two gaits. much as the duty cycles of the feet are longer in the walk than
in the run. The two-channel version of the model simulates data from human bimannal
coordination tasks in which anti-phase oscillations at low frequencies spontaneously swireh
to in-phase oscillations at high frequencies. in-phase oscillations can be performed ar hoth
low and high freqummes )hd*(? fluctnations occur at the anti-phase to in-phase trausitions.
and a '\vaﬂull effect™ of lcxrver errors occurs at intermediate phd\m In a four-chiannel uenrad
pattern generator. both the fre quency and the relative phase of oscillations are controfled
by scalar arousal. The generator is used to sunulate quadruped gaits: in particular, rapid
‘ransitions are simulated in the order— walk. trot. pace. and callop-—-rthat occurs in the oo
Precise switching control is achieved by using an aronsal dependent modulation of rhe model™
inhibitory interactions. This modulation generates a different functional connectivity in
single network at different arousal levels. {10-13]

(7G) VITEWRITE: A neural network model for handwriting production

A nevral network model called VITEWRITE is shown to generate handwriting move
ments. The model consists of a sequential controller. or motor program. that interactswith a
rrajectory generator to move a hand with redundant degrees of freedom. The nearal tragec
tory generator is the Vector Integration to Endpoint (VITE) model for synchronons variable.
speed control of multijoint movements. VITE properties enable a simple control strategy 1o
gencrate complex handwritten script if the hand model containg redundant degrees of frec.
dom. The proposed controller launches transient divectional commmands to independent hand
svnergies at times when the hand begins 1o move. or when a velocity peak in a given ~uvneres




is achieved. The VITE model translares these temporally disjoint =onerey conpiands o
smooth curvilinear trajectories among temporally overlapping synergetic movement The
separate “score” of onset times used in most prior models is hereby replaced by a selfosealing
activity-released “motor program” that uses few memory resources. enables cach svneray
to exhibit a unimodel velocity profile during any stroke, generates letters that are invariant
under speed and size rescaling, and enables effortless connection of letter shapes into words.
Speed and size rescaling are achieved by scalar GO and GRO signals that express compu-
tationally simple volitional commands. Psychophysical data concerning hand movenenrs,
such as the isochrony principle. asymmetric velocity profiles. and the two-thirds power Law
relatipg movement curvature and velocity arise as emergent properties of model interactions.
19-10)
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